
How to glue perverse sheaves

A.A. Beilinson

The aim of this note [0] is to give a short, self-contained account of the vanishing cycle constructions of
perverse sheaves; e.g., for the needs of [1]. It differs somewhat from the alternative approaches offered by
MacPherson–Vilonen [6] and Verdier [8, 9], which justifies, possibly, its publication.

The text follows closely the notes written down by S. I. Gel’fand in 1982. I am much obliged to him. I
am also much obliged to J. Bernstein: the construction of the functor Ψ in no2 below was found in a joint
work with him in spring 1981.

We will consider the algebraic situation only; for notations see [1, §1].

1. The monodromy Jordan block In this preliminary we will fix the notation concerning the standard
local systems on A1 \ {0} with unipotent monodromy of a single Jordan block.

1.1. Let us start with the classical topology situation, so in this no, k = C. For an integer i, as usual,

Z(i) := (2π
√
−1)iZ = Z(1)⊗i, Z(1) = π1

(
(A1 \ {0})(C), 1

)
.

Consider the group algebra Z[Z(1)]; for l ∈ Z(1), let l̃ denote l as an (invertible) element in Z[Z(1)]. Let

I = Z[Z(1)](t̃− 1), where t is a generator of Z(1)

be the augmentation ideal. Let A0 be the I-adic completion of Z[Z(1)]:

A0 = Z[[t̃− 1]], Ai = (t̃− 1)iA0 = (A1)i (i ≥ 0).

The graded ring GrA0 =
⊕

i≥0A
i/Ai+1 is canonically isomorphic to the polynomial ring Z⊕Z(1)⊕Z(2)⊕· · · .

Put
(Ai)∗ = {x ∈ Ai | Ai = xA0} = {x ∈ Ai | x mod Ai+1 generates Ai/Ai+1 = Z(i)};

one has (Ai)∗ · (Aj)∗ = (Ai+j)∗, so
⋃
i≥0(Ai)∗ is a multiplicative system. Let A ⊃ A0 be the corresponding

localization of A0; one has
A = A0

(et−1)
= Z((t̃− 1)).

The ring A has a natural Z-filtration

Ai = [(A1)∗]iA0 = (t̃− 1)iA0;

for i ≥ 0 these Ai coincide with the ones above; one has GrA =
⊕

i∈Z A
i/Ai+1 =

⊕
Z(i), a Laurent

polynomial ring.
Define a Z-bilinear pairing 〈·, ·〉 : A×A→ Z(−1) by the formula

(〈f, g〉, t) = Reset=1(fg−d log t̃)

where g 7→ g− is the canonical involution of the ring A, l̃− = (l̃)−1 = (̃−l). This pairing is skew-symmetric
and Z(1)-invariant:

〈f, g〉 = −〈g, f〉, 〈lf, lg〉 = 〈f, g〉;
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it is compatible with the filtration and non-degenerate:

A1 = (A−1)⊥, Aa,b := Aa/Ab
∼−→ Hom

(
A−b/A−a,Z(−1)

)
and the pairing induced on GrA is:

〈Si, S−i−1〉 = (−1)iSi · S−i−1, where Sj ∈ Z(j).

Let J be the local system of invertible A-modules on (A1\{0})(C) such that the fiber of J over 1 ∈ A1(C)
is A, and the monodromy action of l ∈ π1

(
(A1 \ {0})(C), 1

)
is the multiplication by l̃. We have a canonical

filtration J i on J , such that
(J i)1 = Ai, (J i)1/(J i+1)1 = Z(i),

together with a non-degenerate skew-symmetric pairing 〈·, ·〉 : J ×J → Z(−1), compatible with the filtration,
that coincides on J1 with the above 〈·, ·〉. Put J a,b = J a/J b. We may consider J = lim←→J

a,b as filtered
A-objects in the category

lim←→
{

local systems on (A1 \ {0})(C)
}

(for the definition of lim←→ see the Appendix, A.3).

1.2. These definitions have an obvious étale version: just replace Z(i) above by (Z/`n)(i) and repeat
1.1 word-for-word. We get the ring Aét = lim←→Aa,b in lim←→{sheaves on (Spec k)ét} and the Aét-object Jét =

lim←→J
a,b
ét in lim←→{sheaves on (A1 \ {0})ét}. In the same way we get Q`- and mixed variants.

1.3. The holonomic counterpart of the above is as follows. Put

Ahol = k((s)), Aihol = sik[[s]];

define the pairing 〈·, ·〉 : Ahol ×Ahol → k by the formula

〈f(s), g(s)〉 = Ress=0 f(s)g(−s)ds.

This pairing has the same properties as the one above (invariance: 〈sf, g〉+ 〈f, sg〉 = 0). For integers a ≤ b
let J a,bhol be a D-module on A1 \ {0}k such that J a,bhol ⊗O as an O-module and ∇α = sαdxx for Aa,bhol (here x
is the parameter on A1 \ {0} = Gm). Put Jhol = lim←→J

a,b
hol . This is a filtered Ahol-object in lim←→Mhol(Gm).

Clearly, GrJ =
⊕
OGm · si (recall that the Tate twist is the identity functor in the holonomic situation).

1.4. For any π ∈ (A1)∗ we have isomorphisms

σπ : J a,b → J a+n,b+n(−n), σπ(x) = πnx⊗ π−n,

where π = π mod A2. In the holonomic or in the Q`-situation, we have a canonical choice σ of σπ: in the
holonomic case, put σ = σs = multiplication by sn; in the Q`-case put σ = σlog t, where t is a generator of
Q`(1).

In what follows I will consider the J a,b as ordinary sheaves on A1 \ {0}, so J a,b lives in M(A1 \ {0})[−1] ⊂
D(A1 \ {0}).

2. The unipotent nearby cycles functor Ψun Let X be a scheme, and f ∈ O(X) a fixed function. Put

Y := f−1(0)
i
↪→ X

j
←↩ U := X \ Y, J a,bf := (f |U )∗(J a,b)

(so, in the holonomic case, Jf is the D-module generated by fs). For any M∈M(U) consider

M⊗Jf = lim←→
(
M⊗J a,bf

)
in lim←→M(U). The ring A acts on M⊗ Jf via Jf , and the pairing 〈·, ·〉 defines a canonical isomorphism
D(M⊗Jf ) = D(M)⊗ Jf (1) compatible with the A-action.
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2.1. Key Lemma The canonical arrow α : j!(M⊗Jf )→ j∗(M⊗Jf ) in lim←→M(X) is an isomorphism.

Proof. The lemma would follow if for π ∈ (A1)∗ we could find a certain N ≥ 0 and a compatible system of
morphisms

βa,b : j∗(M⊗J a,bf )→ j!(M⊗J a,bf )

such that αa,b ◦ βa,b = πN = βa,b ◦ αa,b (where the αa,b are the (a, b)-components of α); then α−1 =
π−N lim←→βa,b.

To do this, it suffices to show that all kerαa,b, cokerαa,b are annihilated by some πm independent of
(a, b): just take N = 2m and βa,b = β! ◦ β∗ in the commutative diagram

j!(M⊗J a,b)

(( ((QQQQQQQQQQQQ

πm

��

j∗(M⊗J a,b)
β∗

vvm m m m m m m

πm

��

coimαa,b = imαa,b

vv β!

mmmmmm ((

((QQQQQQQQQQQQ

j!(M⊗J a,b) j∗(M⊗J a,b)

By duality we may consider coker’s only. In the holonomic case the desired fact follows from the lemma on
b-functions (see [2, §3.8]), since M⊗Jf =M · fs((s)): take m =

∑
l(u), where u runs over a finite set of

generators ofM and l(u) is the number of integral roots of the b-function of u. In the constructible case one
should use the finiteness theorem for the usual nearby cycles functor RΨ (see [4, §3]). Note that for any F
in D(X) we have a distinguished triangle

i∗j∗F → RΨun(F) 1−t−−→ RΨun(F)→

in D(Y ), where RΨun is the part of RΨ on which monodromy acts in a unipotent way, and t is a generator
of the monodromy group Z`(1). Therefore

Cone
(
j!(M⊗J a,bf )→ j∗(M⊗J a,bf )

)
= i∗j∗(M⊗J a,bf )

= Cone
(
RΨun(M)⊗ J a,b1

1−t−−→ RΨun(M)⊗ J a,b1

)
[−1],

where t acts on RΨun(M) ⊗ J a,b1 = RΨun(M) ⊗ Aa,b via t ⊗ t̃. Since Aa,b is a Z`(1)-module with one
generator, the power of 1 − t that annihilates RΨun(M) annihilates the cone also, and we are done by the
finiteness theorem for RΨ (see [4, §3]).

2.2.∗ Put Πf (M) := j!(M⊗Jf ) = j∗(M⊗Jf ); clearly Πf : M(U)→ lim←→M(X) is an exact functor (since
so are j! and j∗), and 〈·, ·〉 defines a canonical isomorphism D Πf (M) = Πf (DM)(1). On Πf , there are two
admissible filtrations:

Π•! (M) = j!(M⊗J •f )

Π•∗(M) = j∗(M⊗J •f );

one has Π•! ⊂ Π•∗, Gr•Π!
(M) = j!M(·), Gr•Π∗(M) = j∗M(·). By 2.1, for a ≤ b any

Πa,b
!∗ (M) := Πa

∗(M)/Πb
! (M)

belongs to M(X) ⊂ lim←→M(X). Clearly the Πa,b
!∗ : M(U)→M(X) are exact functors, Π = lim←→Πa,b

!∗ ; one has

D Πa,b
!∗ (M) = Π−b,−a!∗ (DM)(1); and (see 1.4) we have isomorphisms σπ : Πa,b

!∗
∼−→ Πa+n,b+n

!∗ (−n).
∗The following constructions are quite parallel to the Lax-Phillips scheme in scattering theory: the multiplication by s is

time translation, Π0
! , Π/Π0

∗ are in- and out-spaces, etc.
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2.3. We will need the following particular Πa,b
!∗ -functors. The first is the functor Ψun

f or simply Ψf for

short, of unipotent nearby cycles, and its relatives Ψ(i)
f :

Ψun
f := Π0,0

!∗ , Ψ(i)
f := Πi,i

!∗ ∼
σπoo Ψf (i) .

These take values in M(Y ) ⊂ M(X), and we have Ψ(i)
f D = D Ψ(−i)

f (1). The second is Ξf , the maximal
extension functor, and the corresponding Ξif :

Ξf := Π0,1
!∗ , Ξif := Πi,i+1

!∗ ∼
σπoo Ξf (i) .

We have canonical exact sequences

0→ j!(M)(a)
α−−−→ Ξaf (M)

β−−−→ Ψ(a)
f (M)→ 0

0→ Ψ(a+1)
f (M)

β+−−→ Ξaf (M)
α+−−→ j∗(M)(a)→ 0,

which are interchanged by duality. Here α+ ◦ α− = α is the canonical morphism j! → j∗, and β− ◦ β+ =
β : Ψ(1)

f → Ψ(0)
f is the canonical arrow Π1,1

!∗ → Π0,0
!∗ ; under the isomorphism σπ : Ψ(0)

f → Ψ(1)
f (−1) the arrow

becomes multiplication by π−1.

3. Vanishing cycles and the gluing functor LetMX be a perverse sheaf on X, MU its restriction to
U . Consider the following complex,

j!(MU )
(α−,γ−)−−−−−→ Ξf (MU )⊕MX

(α+,−γ+)−−−−−−→ j∗(MU ) (∗)

where α±, γ± are the (only) arrows that coincide with idMU
on U . Put

Φf (MX) := ker(α+,−γ+)/ im(α−, γ−).

Clearly Φf (MX) is supported on Y and Φf : M(X)→M(Y ) is an exact functor (since α− is injective and
α+ is surjective). We have canonical arrows

Ψ(1)
f (MU ) u−→ Φf (MX) v−→ Ψf (MU )

given by the formulas
u(ψ) = (β+(ψ), 0), v(ξ,m) = β−(ξ);

clearly v ◦ u = β− ◦ β+ = β.
Define a vanishing cycles data for f , or f -data for short, to be a quadruple (MU ,MY , u, v), with

MU ∈M(U), MY ∈M(Y ), and Ψ(1)
f (MU ) u−→MY

v−→ Ψf (MU ) such that v ◦ u = β. The f -data form an
abelian category Mf (U, Y ) in the obvious way. Put

Ff (MX) :=
(
MU ,Φf (MX), u, v

)
;

clearly this defines an exact functor Ff : M(X) → Mf (U, Y ). Conversely, let (MU ,MY , u, v) be f -data.
Consider the complex

Ψ(1)
f (MU )

(β+,u)−−−−→ Ξf (MU )⊕MY
(β−,−v)−−−−−→ Ψf (MU ). (∗∗)

Put
Gf (MU ,MY , u, v) = ker(β−,−v)/ im(β+, u) :

this defines an exact functor Gf : Mf (U, Y )→M(X) (Gf is exact since β+ is mono and β− is epi). Call Gf
the gluing functor.
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3.1. Proposition The functors M(X)
Ff //Mf (U, Y )
Gf

oo are mutually inverse equivalences of categories.

Proof. ForMX in M(X) consider (∗) as a diad (for diads see the Appendix, A.2); this way we may identify
M(X) with the category of diads of type (∗) having the property that both γ+|U and γ−|U are isomorphisms.
In the same way, for (MU ,MY , u, v) ∈Mf (U, Y ) take the diad (∗∗); in this way we identify Mf (U, Y ) with
the category of diads of type (∗∗) having the property thatMY is supported on Y . After this identification
is done, we see that Ff and Gf are just the reflection functors; since r ◦ r = id, we are done.

Here is the simplest case of the above proposition:

3.2. Corollary Let X be a small disk around 0 in the complex line. Then the category M(X) of perverse

sheaves on X (with singularities at 0 only) is equivalent to the category C of diagrams V0

v //V1
u

oo of vector

spaces such that both operators idV0 − (u ◦ v) and idV1 − (v ◦ u) are invertible.

Proof. For a vector space V and φ ∈ EndV , let (V, φ)0 ⊂ V be the maximal subspace on which φ acts
in a nilpotent way. Consider the category C′ of diagrams (V ′0 , V

′
1 , φ, u, v), where V ′0 , V

′
1 are vector spaces,

φ ∈ AutV ′1 , and (V ′1 , idV ′1 − φ)0
u //V ′0v

oo are such that v ◦ u = id − φ. The category C is equivalent to C′

via the functor
( V0

v //V1
u

oo ) 7→
(
(V0, u ◦ v)0, V1, idV1 − (v ◦ u), u, v

)
.

The category Mf (X \ {0}, {0}), where f : X ↪→ A1, is equivalent to C′, since M({0}) = {vector spaces},
M(U) = {vector spaces with an automorphism (monodromy)}, and, under this identification, Ψf

(
(V, φ)

)
=

(V, idV − φ)0. Now apply 3.1.

Remark The end of the proof of 2.1 in fact shows that Ψ = Ψun as defined in 2.3 coincides with the
standard RΨun[−1]; the same is true for Φ. One may recover all RΨ(M) by applying Ψun to M⊗ f∗(?),
where ? runs through the irreducible local systems on a punctured disk. For example, ifM is RS holonomic,
then the component of RΨ(DR(M)) that corresponds to the eigenvalue α ∈ C∗ of the monodromy is just
(DR)Ψun(M · fa), where exp(2πia) = α (since Ψun, obviously, commutes with DR). This fact was also
found by Malgrange [7] and Kashiwara [5]. See also [3] where the total nearby cycles functor for arbitrary
holonomic modules (not necessarily RS) was introduced.
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A. Appendix Here some linear algebra constructions, needed in the main body of the paper, are pre-
sented. Below, A will be an exact category in the sense of Quillen; as usual, ↪→,� denote an admissible
monomorphism, resp. epimorphism. If C is any category, then C◦ is its dual.

A.1. Monads A monad is a complex of the form

P =
(
P− //α− // P

α+ // //P+.
)

Denote by H(P) := kerα+/ imα− ∈ Ob(A) the cohomology of P. The category of monads Ã is an exact
category: the exact sequences in Ã are the ones which are componentwise exact; it is easy to see that
H : Ã → A is an exact functor. An exact functor between exact categories induces one between their
categories of monads; these functors commute with H. Also one has (Ã)◦ = Ã◦.

Often it is convenient to represent monads by somewhat different types of diagrams. Namely, let Ã1 be
the category of objects together with a 3-step admissible filtration

P1 =
(
P−1

//γ−1 // P0
// γ0 // P1

)
;

and Ã2 be the category of short exact sequences

P2 =
(
L− //(δ−,ε−) // A⊕B

(δ+,ε+) // // L+

)
such that δ− is an admissible monomorphism, ε− an admissible epimorphism. These are exact categories in
the same way as Ã.

Lemma The categories Ã, Ã1, Ã2 are canonically equivalent.

Proof. Here are the corresponding functors: the functor Ã → Ã1 maps P above to P− ↪→ kerα+ ↪→ P ;

the one Ã1 → Ã2 maps P1 above to P0
//(γ0,ε−) //P1 ⊕ P0/P−1

(δ+,−γ0)// //P1/P−1 where ε−, δ+ are the natural

projections; finally, Ã2 → Ã maps P2 above to ker ε− ↪→ A � A/δ−(L−). I leave the proof of the lemma to
the reader; note that B in the Ã2-avatar is H(P).

A.2. Diads and the reflection functor A diad in A is a commutative diagram of the form

Q =


A α+

'' ''OOOOO

C−
77
α− 77oooo

β−
''OOOOO C+

B β+

77ooooo

 .

Clearly, diads with componentwise exact sequences form an exact category A#; one has (A#)◦ = (A◦)#

and exact functors between A’s induce ones betwen A#’s.
As in the case of monads, we may represent diads by other diagrams. Let A#

1 be the category of monads
of the form

Q1 =
(
C− // // A⊕B // // C+

)
such that the corresponding arrow C− → A is an admissible monomorphism, and the one A → C+ is an
admissible epimorphism. Let A#

2 be the category of short exact sequences

Q2 =
(
D− //

(γ−,δ
1
−,δ

2
−)

// A⊕B1 ⊕B2
(γ+,δ

1
+,δ

2
+)

// // D+

)
such that both D−

(γ−,δ
i
−)

−−−−−→ A ⊕ Bi are admissible monomorphisms, and both A ⊕ Bi
(γ+,δ

i
+)

−−−−−→ D+ are
admissible epimorphisms. These are exact categories in the same way as A#.
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Lemma The categories A#, A#
1 , and A#

2 are canonically equivalent.

Proof. The corresponding functors are: the one A# → A#
1 maps Q above to

C− //(α−,−β−) //A⊕B
(α+,β+) // //C+

and the one A#
1 → A#

2 maps Q1 above to its Ã2-avatar (so B1 = B,B2 = H(Q1)). The first functor is
obviously an equivalence of categories; as for the second one, this follows from Lemma A.1.

Note that in the diagram of type A#
2 one may interchange the objects Bi. This defines the important

automorphism r of A#
2 , and thus of A#, with r◦r = idA# ; call it the reflection functor. Clearly it transforms

a diad Q above into

r(Q) =


A

)) ))RRRRR

kerα+

66
66mmmm

''PPP
cokerα−

H(Q)

66mmmm

 ,

where H(Q) := H(C− → A⊕B → C+) is the cohomology of the corresponding monad.

A.3. Generalities on lim
In what follows I will make no distinction between an ordered set S and the usual category it defines; so

for a category C an S-object in C is a functor S → C; i.e. a set of objects Ci, i ∈ S, and arrows Ci → Cj
defined for i ≤ j with the usual compatibilities. Let Z denote the set of integers with the standard order,
and Π = {(i, j) | i ≤ j} ⊂ Z× Z with the order induced from Z× Z.

Let AΠ be the category of Π-objects in A; this is an exact category in the usual way: a short sequence
(Xi,j) → (Yi,j) → (Zi,j) is exact iff any corresponding (i, j)’s sequence in A is exact. Say that an object
Xi,j of AΠ is admissible if for any i ≤ j ≤ k the corresponding sequence Xi,j → Xi,k → Xj,k is short exact.
Let AΠ

a ⊂ AΠ be the full subcategory of admissible objects. In any short exact sequence if two objects are
admissible then the third one is, so AΠ

a is an exact category in the obvious way. Clearly A embeds in AΠ
a

as the full exact subcategory of objects Xi,j with Xi,0 = 0, X1,j = 0.
Let φ be any order-preserving map Z → Z (so that limi→±∞ φ(i) = ±∞). Then for any Π-object Xi,j

we have a Π-object
φ̃(Xi,j) := Xφ(i),φ(j);

clearly X 7→ φ̃(X) is an exact functor that preserves AΠ
a , and ĩd is the identity functor. If φ ≤ ψ, i.e.

φ(i) ≤ ψ(i) for any i, then we have an obvious morphism of functors φ̃→ ψ̃.
Define the category lim←→A to be the localization of AΠ

a with respect to the morphisms φ̃(X) → ψ̃(X),
X ∈ AΠ

a , and φ ≤ ψ as above. The natural functor lim←→ : AΠ
a → lim←→A is surjective on (isomorphism classes

of) objects. A morphism lim←→Xi,j → lim←→Yi,j is given by a pair (α, fα), where α : Z→ Z is an order-preserving
function and fα : Xi,j → Yα(i),α(j) is a compatible system of morphisms; two pairs (α, fα) and (β, fβ) give
the same morphism if f, g give the same maps Xi,j → Ymax{α(i),β(i)},max{α(j),β(j)}.

Say that a short sequence in lim←→A is exact if it is isomorphic to the lim←→ of some exact sequence in AΠ
a . A

routine verification of Quillen’s axioms shows that this way, lim←→A becomes an exact category. The functor
lim←→ is exact; it defines a faithful exact embedding A ↪→ lim←→A. Any exact functor between A’s induces one
between their lim←→’s; we also have lim←→(A◦) = (lim←→A)◦.

Remarks

a. We have Q lim←→A = lim←→QA (where Q is Quillen’s Q-construction);

b. If A 6= 0, then lim←→A is not abelian;

c. One can also take lim←→’s along any ordered sets with any finite subset having upper and lower bounds.
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